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The prediction of separation of the turbulent 
boundary layer 

By B. S .  STRATFORD 
National Gas Turbine Establishment, Farnborough 

(Received 17 July 1958) 

A rapid method for the prediction of flow separation results from an approximate 
solution of the equations of motion; a single empirical factor is required. The 
equations are integrated by a modified ‘inner and outer solutions ’ technique 
developed recently for laminar boundary layers, the criterion for separation being 
obtained as a simple formula applying directly to the separation position. At 
Reynolds numbers of the order of lo6, the criterion is 

C,(xdC,/dx)* = 0.39( 10-6R)i%, 

when dzp/dx2 2 0 and C, < +; the coefficient 0.39 is replaced by 0.35 when 

The prediction of the pressure rise to separation is likely to be from 0 to 10 % 
too low, which puts it second in accuracy to those methods, such as Maskell‘s 
(1951), which utilize the Ludweig-Tillmann skin friction law. However, the 
convenience of the method makes the present error acceptable for many applica- 
tions, while a greater accuracy should be attainable from an improved allowance 
for the quantity dzp/dx2. 

The main derivation is for arbitrary pressure distributions, while an extension 
leads to the pressure distribution which just maintains zero skin friction through- 
out the region of pressure rise. 

The concept of a turbulent inner layer with zero wall stress is put forward, and 
it is deduced that in the neighbourhood of the wall the velocity is proportional to 
the square root of the distance from the wall. 

azppxz < 0. 

1. Introduction 
Previous methods for calculating the position of separation for the turbulent 

boundary layer-i.e. the position at which the flow ‘stalls’ or separates from the 
wall-have solved the momentum or energy equations in conjunction with 
empirical expressions representing the shape and behaviour of the velocity profile 
(see von Doenhoff & Tetervin 1943; Goldstein 1938; Kalikhmann 1943; Rotta 
1953; Spence 1956a, b ;  Squire & Young 1937; and Maskell 1951). These methods 
are reasonably accurate, but provide only 8 limited understanding of the 
flow. 

The present method is based upon the equations of motion (Goldstein 1938), 
the analysis of the turbulence utilizing either dimensional analysis or mixing 
length theory (Durand 1943, $25). Moreover, a closer physical picture than 
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hitherto is attempted for the flow. The method postulates that, as for the laminar 
layer (Stratford 1954), the turbulent layer in a pressure rise may be divided into 
two distinct regions. The outer is an historical region in which the pressure rise 
just causes a lowering of the dynamic head profile, the losses due to the shear 

x = o  x = x, 
Distance from the leading edge 

FIGURE 1. The type of pressure distribution treated initially. 

+Pu; - ' *  rl- 

X=2, i 
FIGURE 2. Development of a boundary layer in a sudden pressure gradient. At z = z,, the 
profile is unchanged except at y = 0. Just downstream of xo there is a general lowering of 
velocity in the outer layer ( A )  and a change of shape in the inner layer (B) .  

stresses being almost the same as for the flow on a flat plate. The general solution 
is obtained in terms of the flow on a flat plate, the relationship to the flat plate 
flow being identical with the corresponding relationship for the laminar boundary 
layer. In  the inner layer, on the other hand, the inertia forces are small so that the 
velocity profile is distorted by the pressure gradient until the latter is largely 
balanced by the transverse gradient of shear stress. The solution found for the 
inner layer at the separation position is such that close to the wall the velocity is 
proportional to the square root of the distance from the wall. This velocity profile 
is in contrast to that for the laminar boundary layer a t  separation, where the 
velocity is proportional to the square of the distance from the wall. A summary of 
the treatment and a picture of the flow is sketched in figures 1 to 3. It will be seen 
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from figure 1 that the pressure distribution considered initially has a simplified 
form in which a sharp pressure rise starts abruptly at the position x = xo after 
constant pressure for a distance xo. 

The final solution is given by equations ( 19 a) ,  ( 19 c)  and (23). These relate x, C, 
and dC,ldx at the separation position, and may be applied very rapidly-to any 
given pressure distribution. 

Flow forward and 
ro positive 

-- 
Flow reversed and 

lo negative 

FIGURE 3. The separation position. The flow reaches the separation condition of zero skin 
friction when the backward force yiVp can only be adequately balanced by the shear stress 
difference ( T ~  - T ~ )  if T~ is zero. 

2. The outer layer 
Where there is a rapid pressure rise the shear forces in the outer part of the 

boundary layer are small compared with either the inertia forces or the pressure 
gradient. As a preliminary it will be found helpful to consider the solution for a 
flow in which, downstream of xo, the shear forces are supposed zero, even though 
vorticity is present. 

In  such a flow the total pressure, P, will remain constant along a streamline and 
Bernoulli’s equation holds : 

- 0 (zero shear stress), 
aP _ -  
as 

where s is the distance along a streamline. Thus 

P(x, y9) = P(zo, y9) (zero shear stress). 

The solution is therefore that the dynamic head at  any point is equal to the 
dynamic head on the same streamline at xo minus the rise in static pressure. 
Since the flow at xo is known, the flow in the outer region of the boundary layer 
downstream of xo is solved. 

For the real flow the shear forces cause a decrease in total pressure along a 
streamline, Bernoulli’s equation being replaced by 

ap a7 
as a ~ ’  (1) - = -  

as may be deduced from the equations of motion and continuity; T is the shear 
stress and y is the distance from the wall. Thus 

1-2 
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Let the flow under consideration now be compared with a second flow which has 
identical conditions as far as x = x,,, but which continues at constant static 
pressure thereafter. The distributions of for the two flows will be identical 
for points away from the wall at x = x,; also the distributions will remain closely 
the same for a short distance downstream of xo, because the effect of the pressure 
rise in the outer part of the boundary layer in this region is to cause a general 
lowering of the velocity profile rather than a change in shape. It follows, using 
equation ( 2 ) ,  that the total pressure loss caused by the shear forces will be approxi- 
matelythe same for the two flows. Thus the total pressures, whichwereequal at xo, 
may as an approximation still be supposed equal at  points just downstream of 
x,, 1.e. 

(3) 

where the dash denotes the comparison profile, 

J O  

and where the condition @ 3 @% denotes an application limited to the outer 
region of the profile (ki is the value of $ at the edge of the inner layer). 

Since p' = constant = p,, where p is the static pressure, equation (3) gives 

4PU2(X, $1 = 3Pu'2(x, $) - (1, -130) ($ 3 $A. (4) 

The dynamic head a t  any point is therefore equal to the dynamic head at the 
corresponding point in the comparison flow minus the rise in static pressure. 

Equation (4) represents for the outer part of the boundary layer a solution 
which is almost exact at positions a short distance downstream of xo (since the 
values of both Bpu2 and (alas) ipu2 are exact at x,), and which would be expected 
to indicate at least the main behaviour for large distances downstream of xo. 
(For an alternative assessment, the reduction in the value of the local dynamic 
head ipu2 from its initial value may be divided into three parts, these being 
due respectively to the rise in static pressure, to the viscosity between x = 0 and 
x = x,, and to the viscosity downstream of x,. Of these three effects, the first two 
have been included exactly in equation (4). The third effect, which is likely to be 
relatively small for the outer part of a boundary layer at  separation, has been 
allowed for approximately.) 

The standard solution required for u', the velocity in the boundary layer 
without pressure rise, may for the turbulent boundary layer be taken as the 
following semi-empirical form. (The usual derivation is that given by Goldstein 
(1938), while Schlichting (1941) obtains the result by approximate solution of the 
equations of motion.) 

where 

8' = 0*036~R-*, ( 5 c )  

and where the value of n varies slightly with the Reynolds number but is usually 
close to 7. 
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Equations (4) and (5) provide a general solution for the outer region of the 

Differentiation of equation (4) with respect to 9, and replacing u(a/a@) by 
boundary layer. 

spy, gives 

3. The inner layer 
The action of the pressure rise in the outer layer has been interpreted as a direct 

reduction in the dynamic head along each streamline, the only effect of the shear 
forces being to cause a superposed, and almost independent, loss. It can therefore 
be said that in the outer layer the back pressure force is balanced by the fluid 
inertia forces. 

In  the inner layer the effect of the fluid inertia is too small for the above 
mechanism to be possible. In  particular the inertial forces at the wall are zero, 
so that the pressure forces must be balanced entirely by the gradient of the shear 

force, i.e. ap a7 

ax ay 
- - _  - (y = 0), (7)  

as follows from the equations of motion, or from equation ( l ) ,  by puttingau/as = 0. 
Now this balance at  the wall can occur only after there has been a change in the 
profile shape. When the sudden pressure gradient is reached at  x = xo, the 
dynamic head and hence the general level of velocity would start to fall every- 
where, were it not for the no slip condition at  the wall. This, as it were, anchors 
the velocity profile, which distorts instantaneously at x = xo, y = 0, until, just at  
the wall, the required balance is attained. The inner layer commences its growth 
a t  the discontinuity at  x = xo, y = 0 and is the region in which the slope of the 
velocity profile has changed. In the inner layer there is a transition between fluid 
at the wall, for which the pressure force is balanced entirely by the shear force 
gradient, and fluid in the outer layer, where the pressure force causes simply a 
direct reduction of dynamic head. 

The analysis may proceed either on dimensional arguments* or by mixing 
length theory. Using dimensional arguments, suppose we have a layer within 
which the motion is determined by energy transport due to working by shear 
stresses, there being relatively little effect from energy advection by the mean 
flow. The motion then depends on 

70, (a7/%1)0, (a27/~y2)07 

and the kinematic viscosity. If the wall stress, T,,, is zero, dimensional similarity 
requires that 

sufficiently close to the wall to satisfyy(a2~/ay~),, < (aT/ay),,. In  the fully turbulent 
part of the flow, the relative motion is independent of the viscosity an.d so 

* These were suggested by the referee. 
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where A ,  B are absolute constants. For large values of --- , (9) is nearly (;;;:I) 
+pu2 = 4~2y(a7/ay), = + A ~ Y  aplax. (10) 

The alternative analysis by mixing length theory is able to indicate the order 
of magnitude of the constant of proportionality. The momentum transfer hypo- 
thesis will be adopted and, as is conventionally assumed for the flow on a flat plate, 
the mixing length will as a first approximation be assumed proportional to the 
distance from the wall. Now by the standard theory (e.g. Durand 1943, $25) the 
shear stress when aulay is positive is 

7 = pK2y2(aU/ay)2 (9 small), (11) 

where K is the Karman constant. The boundary layer a t  separation has zero skin 
friction, so that theintegration of equation (7), regarding this equation as holding 
over a small region close to the wall, gives 

7 = yap/ax (70  = 0, y small). (12) 

Elimination of 7 between equations (1 1) and (12) yields 

while for no slip at the wall, u = 0 at y = 0, and equation (13) integrates to 

which is in agreement with equation (10). 
Thus close to the wall the asymptotic form of the separation profde is that the 

velocity is proportional to @ and the dynamic head is proportional to y. 
Equation (14)) with an appropriate value for K ,  could be regarded as the first 

term of a series expansion representing the whole inner layer profile, the higher 
terms arising from the inertial forces and the gradual fall-off of the mixing length 
from the linear value assumed for it. Since the details of the mixing length 
behaviour could be determined only by recourse to experiment, it is particularly 
expedient for the present purpose, of calculating the separation position, to 
incorporate a single empirical factor, say ' p ' ,  in this first term, omitting higher 
terms whatever their source, and to obtain the factor from a special experiment. 
By omitting the higher terms in the profile expansion the profile has been over- 
idealized as regards its own shape, so that good agreement with experimental 
profiles would not be expected, but the empirical factor might be expected 
adequately to represent the effect on the separation criterion of the higher terms. 
The factor /3 will be used also to represent any effects which the pressure 
rise might have on the mixing length, effects which are discussed in more 
detail by Ludweig & Tillmann (1949)) by Squire (1950)) and by Stratford 
(1956, 1959). 
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For present purposes, therefore, the inner layer (y  < y i )  is represented by the 
idealized profile 

0-41 being the flat plate value for the Karman constant. 

vorticity transfer theory inapplicable. 
Incidentally, the fact that aT/ay > 0 and aZu/ay2 < 0 in this flow renders the 

4. The joining condition, and the preliminary result 
At the join between the inner and outer layers continuity is specified in $, u and 

aulay. This is sufficient to determine the join, and the suggested algebra for so 
doing and for deriving the separation condition (equation 19 a) is as follows. 

At the join $ and au/ay for the inner layer are equal to $ and au/ay for the outer 
layer and, therefore, from the definition of corresponding points and from 
equation (6), $ and aulay for the inner layer at the join are equal to  $ (or tjfl) and 
au'lay' for the corresponding point on the comparison profile. Equating $ ( a ~ / a y ) ~  
and $-'(au'lay')3, calculated respectively from equations (15) and (sa), gives that 
the join at the separation position is such that its corresponding point satisfies 

I (2n4)ln 3( 0*41p)4 
($ = $i), (5) = (n + 1) (ns' dC,/dx)2 

the join being thus determined. A further property of the join 

u 2 / u ' 2  = 3 / ( n +  1) ($ = $i) (17) 

is obtained by comparing u2/($au/ay), calculated from equation (15), with the 
corresponding quantity calculated from equation (5 a). 

The separation condition may now be derived from equation (4) for, from thst 
equation and equation (5a) ,  

c, = (y'/S')2'" (1 -U2/U12) ($ 2 $i, cp < [l -u2/ut2]), (18) 

where C, = ( p - p J / & p U ; .  Use of values a t  the join, as given by equations (16) 
and (17), followed by substitution of equations (5b)  and ( 5 c )  for s', leads to 

R being the Reynolds number based on the local value of the distance x and the 
peak velocity Uo. In  obtaining equation (19a) the quantity 

(n + l)f(n+l) (n + 2)* / (n  - 2)4(n-2) 

has been replaced, by 10-7 x (2.00)&("-2), which is within 1 yo of the former 
quantity when 6 < n < 8. 

The limitation C, < (n - 2)/(n + 1) results formally from the join of the inner 
layer with the outer layer reaching the edge of the boundary layer when using the 
idealized velocity profiles. The same limitation applies to the range over which /3 
has been determined empirically. 
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The parameter ~3 may be determined by comparison with the experiment which 
is described in the following paper (Stratford 1959). In  this experiment the flow 
was maintained just at the separation condition throughout the pressure rise, as 
will be considered theoretically in the last section of the present paper. It is found 
that $ is independent of C, and has the value 

p = 0.66 (7, = 0, C, G [n - 2 ] / [ n  + 11). 

The qualification '7, = 0' has been added because $ will vary somewhat with the 
value of d2p jdx2 immediately prior to separation, this quantity having its greatest 
possible negative value in the experiment. The variation will be discussed in $ 5 .  

The quantity ' n '  pertains to the flat plate comparison profile a t  x = x,, suffix 
s being used to denote separation; the relevant Reynolds number is still 

R, = xsUo/v. 

Now if C,,, = 0.50 equation (19a)  is seen to be independent of n. Moreover, in 
general it  is not sensitive to n, for example, a typical change from n = 6 to n = 7 
has a 4 yo effect, and so the use of a reasonable value for n is sufficient. Analysis of 
a velocity profiIe obtained by Schubauer & Klebanoff (1950) suggests the value 
n = 7 a t  a Reynolds number of 1.43 x 107, while as part of the experiment with 
continuously zero skin friction the value n = 6 was obtained for a Reynolds 
number of 0.64 x lo6. Comparison of the values of n with those of log,, R and 
consideration of the degree of accuracy required therefore suggests the use of 

the errors thus introduced into the formula being expected to be usually less 
than 1 yo. 

Except for the small effect of (d2p/dx2),, which will be discussed in $ 5 ,  equa- 
tions (19 a )  to (19c)  are sufficient to determine whether separation will occur at  
any chosen point on a given pressure distribution. This is the principal result of 
the paper. 

Xom,e typical values, and comparison with the laminar boundary layer 
Equations (19)  demonstrate that the value of the pressure rise to separation 
is not highly sensitive to the value of the pressure gradient at separation. As a 
typical example, for a separating turbulent boundary layer the value of xdC,ldx 
is in the neighbourhood of unity and so the value of C, at separation would be 
about 0.35, say between 0.3 and 0.5. 

These results are to be compared with results for the laminar layer, which, 
according to Stratford's (1954) analysis, satisfies 

CP(x%))" = 0.0076 (laminar separation). 

The pressure recovery of the laminar layer at separation is thus much more 
sensitive to pressure gradient. Values for (xdC,/dx), for a laminar boundary layer 
would usually range between 0.2 and 0.5, or higher, so that a typical pressure 
recovery is, say, 0.06. 
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Allowance for a n  initial region of favourable pressure gradient or laminar jloul 

For pressure distributions having an initial region of favourable pressure 
gradient, the value of x to be used in the above equations has to be an equivalent 
value, the flow with favourable gradient being replaced by one at constant 
pressure and with a mainstream velocity equal to the peak mainstream velocity 
U,. The criterion of equivalence is the value of the boundary layer momentum 
thickness 0 at the point of peak velocity. It may be shown semi-empirically 
(using the energy equation and the data of Schubauer & Klebanoff (1950)) that 
for a boundary layer turbulent from the leading edge this criterion leads approxi- 
mately to 

x, = s,"" ( ; )3dX,  (20) 

where X and x are distances from the actual and the equivalent leading edges 
respectively. 

For a boundary layer which is initially laminar the momentum thickness 8, 
at X = XI may be calculated from the following equation, which has been 
obtained with minor variations by Young & Winterbottom (1940), Walz (1943) - 

and Thwaites (1949) : 
8, = 0*664[?/ x u 5  (o;) d X ]  4 . 

Ul 0 

The equivalent length of turbulent boundary layer can now be determined 
from equation ( 5 c )  on the standard assumptions of sudden transition and of con- 
servation of momentum. For the final equivalent condition, in which both 
the boundary layer is entirely turbulent and the pressure is constant at  po until 
the rise of pressure commences, equations (5c) ,  (20) and (21) lead to 

where X is the distance from the actual leading edge and suffix t indicates values 
at transition. Suffix 0 now refers to conditions a t  the position of peak velocity, 
or a t  transition, whichever is later. If, however, transition is immediately 
followed by a steep pressure rise leading to separation the present theory would 
only be roughly correct, as the turbulent flat plate profile assumed to exist at  
x = x, would not be properly formed. 

The profiles at separation 
The derivation of the preceding sections can be used to obtain the profiles a t  
the separation position; these are shown in figure 4 in the form of dynamic head 
profiles. It will be noticed that there is an appreciable variation in the shape of 
the separation profile with variation in the value of CP,,. 

The value of the ratio O,/B', where 8' is the momentum thickness of the com- 
parison boundary layer, is plotted in figure 5 as a function of CP,,. The absolute 
value of 0, for any given pressure distribution may be found by using this figure 
together with the relation for 0' from equation ( 5  c). 
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1 .0 

- - 
0 8  .i t 

f T 0 6  5 2  

C 
04  v 

P 
8 

.i4 o 2  

0 1.0 20 3.0 4.0 - Y l r -  
Distance from wall.(non-dimensional) 

FIGURE 4. The idealized theoretical dynamic head profles at separation, R, = 1W. 
8' = thickness of the flat plate comparison profle. 

0 0 1  0.2 0 3  0 4  0 5  0 6  

Pressure coefficient at separation 
--CP,.S-- 

FIGURE 5. Momentum thickness of the boundary layer at separation, 8' = momentum 
thickness of the comparison profile. 

5. Tests of the method and development of the formula to allow for 
variation of (d2p/d2x),  

The formulae (19), of which formula (19 b)  strictly holds only for large negative 
values of d2p/dx2, will be applied to certain test pressure distributions and then a 
correction discussed for d2p/dx2. 

The data are taken from von Doenhoff & Tetervin (1943) for the first three tests 
and from Schubauer & Klebanoff (1950) for the fourth; Schubauer & Klebanoffs 
measurements were made on a special surface in a large wind tunnel. In  order to 
assist the assessment the experiment used for the empirical determination of p 
has been included as 'Test ' 5. It should be noted that the experimental pressure 
distributions allow some range of interpretation as regards dpldx, especially in the 
neighbourhood of a point of inflexion, and the effect on the theoretical prediction 
could be as much as -t 5 yo. 

The results are shown in figures 6 and 7 and table 1 (pages 11-13). 
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It will be seen that in the main tests the prediction for the pressure recovery at 
separation is always too low. The discrepancy in p varies between 0 and 20 yo; 
the discrepancy in Cp,s is also in this range, but the precise value depends on how 
long the boundary layer ‘hovers ’ (due to its softening of the pressure gradient) 
just close to the condition for separation, without actually separating. 

2 4  

2.0 

1.6 

1.2 

2.8 

2 4  

20 

1.6 

I .2 

Separation according 
t to Maskell 

0 0.1 0.2 0.3 0.4 0.5 0.6 - xic - 
Chordwise position 

FIQURE 6. Tests (1 and 2) of the method before its development to allow 
for the effect of dap/dxa. 

A closer examination of the results in conjunction with the pressure distribution 
shows that the error in the formulae increases with increase in the value of d2p/dxa 
immediately prior to separation. Consideration of the theoretical analysis for the 
laminar boundary layer (Stratford 1954) shows that this is to be expected, and it 
would have been found in that case also that the use of the result obtained for 
flow with continuously zero skin friction would have caused a considerable error. 
At present, there is insufficient data to make full allowance for d2p/dx2 in the case 
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of the turbulent boundary layer, but a crude modification, that would about 
halve the error, would be to replace equation (19b) by 

p = 0.66 (d2pldxz < O ) , }  

the relevant value of dzpldx2 being that immediately prior to separation. The 
final result is then given by equations (19a), ( 1 9 ~ )  and (23).  For the Reynolds 
numbers of the order of 106, the form quoted in the Summary is a convenient 
simplification. 

p = 0.73 (d2p/dX2 0) ,  (23) 

5.0 I I I I 
Test 3. Aerofoil 2 at 9.1° incidence, 

R,, = 239 x i06 

Predicted separation by 
formula 19 (unmodified for 

d2pldx2) 
i 

+\ 
Separation 

I according-to-- 

1.0 

I 0;4 4'6 1 ;o 

9 $8 
2 7  Schubauer & Klebanoff, 

p 1 The pressuie distribution of 

1'0.6 0.4 

5 0 0.4 0.6 

formula 19 (unmodified R 
'ct 

I 

2 

~ 

20 25 ft 30 

Chordwise position 
FIGURE 7. Tests (3 and 4) of the method before i ts  development to sllow 

for the effect of d2p/dx2. 

Further tests would be desirable at  extreme Reynolds numbers, in ewe, for 
example, the factor /3 should vary. At  present /3 has been assumed to be inde- 
pendent of the Reynolds number. 

As a further test of the basic theoretical concepts the theoretical predictions 
for the momentum thickness may be compared with the results taken from the 
experiment with continuously zero skin friction. The predictions are independent 
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of the empirical factor p when plotted in the form SJS’ against C,, as in figure 5 ;  
it is the more significant therefore that, as may be seen from the figure, the 
predictions are satisfactorily confirmed. The experiment also confirms the linear 
dynamic head close to the wall predicted by equations (10) and (14), at least for 
the special conditions of that experiment where there is no actual reverse flow. 
With flow reversal the softening of the pressure gradient, together with a new 
type of turbulence discovered while carrying out the experiment with zero skin 
friction, might tend to  mask the linear dynamic head profile, although the 
criterion for separation would not be affected. 

Test no. ... 1 2 3 4 5 

Figure no. 6 6 7 7 4 of next paper 

R11/10“ 0.76 2.2 3.4 20 1.0 to 1.6 
n. (nominal value) 5.9 6-3 6.5 7.3 6.0 
C,,8 theory, before allowing 0.372 0.412 0-626 0-442 

0 to 0.57, used 

to fitting 

0 Y O  

1 for (dap/dxZ),  

C,,8 experiment* 0.409 0.464 0.669 0.460 for empirical 
to to to 

0.470 0.495 0.734 0.530 

Approx. increase in p re- + 8 yo + 20 % + 20 Yo + 2 Yo 
quired for theory to give 
agreement with experiment 

d2p/dxa immediately prior Slightly Large Large Negative Maximum 
to separation positive and and negative 

* The two experimental values quoted for C , ,  for each test, correspond (except in 
test 5 )  respectively to the position where C,(zdC,/dx)* is a maximum (this is where the 
danger of separation is greatest according to the theory), and to the position where dC,/dx 
has become zero (due to the Separation destroying the pressure rise). 

TABLE 1. Tests of the method using equations (19) without correction for (dv/dxa)) ,  

positive positive 

Comparison with other methods 
Results of calculations by the method of von Doenhoff & Tetervin (1943) and 
by that of Maskell (1951) are shown respectively in figure 8, and in figures 6 and 7. 
von Doenhoff & Tetervin’s criterion for separation is that the shape parameter H 
should lie between 1.8 and 2.6 and this, it will be seen, leaves an indeterminacy of 
up to about 10 yo in the predicted pressure rise to separation, i.e. about the same 
as for the present method. Maskell improves upon this accuracy mostly by using 
Ludweig & Tillmann’s skin friction law, which, on extrapolation, gives the 
position of separation once the distributions of H and 6 are known. Recently, 
Spence ( 1956 a )  has increased the usefulness of these types of analysis by developing 
a method whereby H may be more rapidly calculated. The accuracy of Maskell’s 
predictions is probably highly satisfactory for most pressure distributions, 
although difficulty might be experienced with special pressure distributions such 
as very sharp pressure rises or the flow with continuously zero skin friction. 

For most pressure distributions the present method probably would not be as 
accurate as either Maskell’s method or the Maskell-Spence method until the 
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allowance for d2p/dx2 has been improved. However, it should be more accurate 
than those methods for the special types of pressure distribution mentioned 
above, and it could be employed generally, taking advantage of its considerably 

2.4 

2.0 

1.2 2. 

c 

tj a42 

g z  

& 

.a 
40 1.: 

I 3 O  

20 

1.0 

1.7 

1.5 

1.3 

xlc  __t 

ongins Chordwise position 

- 

FIUURE 8. Results from the method of von Doenhoff & Tetervin (separation is 
assumed to occur when H is between 1.8 and 2-6). 

greater speed, where its 10 yo range of uncertainty is acceptable. Furtner claims 
for the present method are that it provides a better physical picture and under- 
standing of the flow, and also a greater flexibility. The latter is demonstrated 
both by the ease with which may be seen the effects of any change in a given 
pressure distribution, and by the extension to flow with continuously zero skin 
friction, as obtained in fj 6. 

An example 

We shall consider the case of a linear pressure rise starting at  the leading edge, 
i.e. C,, = xlc. For simplicity it will be assumed that the Reynolds number R, is 
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equal to lo6. Since dzpldx2 is zero, the value 0.73 is used in equation (23); 
equations (19a) and (19c) (or the equation of the Summary) then become 

[ ( X / C ) ~ ] ] ,  = 0.39, 

X , / C  = Cp,8 = 0.53, 

UJU0 = 0.68. 

6. An extension to flow with continuously zero skin friction 
If the separation condition of zero skin friction is reached at each point down- 

stream of x = x,,, but separation itself is always just avoided, the separation 
criterion of equations (19) will apply at  all positions and consequently will become 
a differential equation for the pressure distribution. On integration, neglecting 
the small variation of n with x, the pressure distribution is found to be 

where Ro = xo Uo/v, the coefficient 0.645 being a close fit (to Q % for 6 < n < 8)  to 
a function of n. 

At a Reynolds number of Ro = 106, when n + 6, this pressure distribution 
becomes 

C, = 1.23 - -1 ( T ~  0, C, < 4). ( 2 5 )  [(a* li 
When C, = (n - 2)/(n + 1) the inner layer reaches the edge of the main boundary 

layer and equation (24) is at  the limit of its validity. At greater pressure rises a 
solution could be sought in which the whole boundary layer retained a constant 
profile shape. Thus the simple form of the momentum equation is 

The value of the shape parameter H ,  = S*/O, is put equal to a constant and, with 
the skin friction ro equal to zero, the equation readily yields 

This may be transformed into a pressure distribution by direct resort to an 
argument based on similarity. Alternatively, the inner layer profiles of equa- 
tions (lo), (14) and (15) show that 

and therefore, by similarity, dp i P u 2  

ax O ’ 
-K- 

Elimination of 8 from equations (27) and (28), integration, and putting H = 2.0, 
which would be the value for a linear dynamic head as used in the simplified inner 
layer profile, leads to 

c , = [ I-- (x+ab)i] ( 7 0  = 0 9  cP 2 
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where a and b are constants, determined by continuity with the pressure distribu- 
tion of equation (24). For a Reynolds number of Ro = los continuity with 
equation (25) gives a = 0.39xi and b = - 0 . 7 8 ~ ~ .  

This extension of the theory has utilized the empirical value p = 0.66 obtained 
from the experiment with zero skin friction; the closeness of the empirical fitting 
may be judged from the comparison shown in figure 4 of the following paper. 

The work leading to the present paper was started in the Aeronautics Depart- 
ment of Imperial College and has been completed at  the National Gas Turbine 
Establishment. The author is indebted to staff and colleagues who have given 
valuable criticism and advice, and to the Department of Scientific and Industrial 
Research for a grant which enabled the work to be initiated. 
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